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The influence of surface diffusion on 
topography development of an 
amorphous sol,d dur,ng sputtering 

G. CARTER 
Department of Electrical Engineering, University of Salford, Salford, UK 

The erosion and development of topography on an initially contoured amorphous solid 
due to the simultaneous action of ion beam sputtering and surface diffusion, is analysed. 
It is shown that derivation of formal expressions for the local rate of co-ordinate motion 
and radius of curvature is straight forward. Application of detailed prediction of the time 
varying behaviour of the surface profile is analytically difficult, however, and com- 
putational methods are suggested. The case of radiation enhanced surface diffusion is also 
considered briefly. 

1. Introduction 
In a series of four papers [1-4]  the author and his 
colleagues have examined, theoretically, the devel- 
opment of topography of amorphous solids 
sputtered by ion beams. Other theoretical or com- 
putational studies of this problem have also been 
published [5-9]  together with experimental ob- 
servations [8, 10, t 1] which, generally speaking, 
confirm theoretical predictions. In the theoretical 
work one major assumption has been that the 
amorphous solid is sputtered with a uniform flux 
of ions and that topography results only from the 
variation of the sputtering coefficient (number of 
sputtered solid atoms per incident ion) with 
direction of ion incidence to a surface element. 
Two exceptions to this assumption are in the work 
of Bayly [12] who allowed for a variable ion flux 
due to the contribution of sputtered atoms and 
ions reflected at small angles from a surface 
element on to another surface element, and in 
the studies of Sigmund [13] who considered the 
local variations in sputtering coefficient due to 
non-uniform energy deposition by an ion when 
surface features are of a size comparable to the 
dimensions of the zone near the solid surface where 
the ion deposits energy. 

The assumption of tile absence of other surface 
modifying processes which act during, or can be 
accelerated by, ion bombardment, such as surface 
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and bulk diffusion and sublimation, has not yet 
been questioned, although recently several authors 
[14]-16]  have found substantial changes in the 
topography developed upon polycrystalline Fe as a 
function of the temperature of the Fe. These 
changes have been tentatively ascribed to the 
increasing influence of surface diffusion with 
increasing temperature. 

It is the purpose of this communication to 
present, as a preliminary step, the mathematical 
formalism which describes topography develop- 
ment when both sputtering and surface diffusion 
can occur during bombardment. It will be shown 
that although the formulation is straightforward, 
detailed predictions of the stages of topographic 
development are difficult and that computational 
methods may be required. 

2. Theory 
As in the author's previous studies, an amorphous 
solid is assumed so that there are no local per- 
turbations in the assumed smoothly varying 
sputtering coefficient as a function of direction 
of ion incidence. This assumption is also important 
in the description of the surface diffusion process. 
Surface diffusion occurs both by atomic and defect 
migration over the macroscopic surface and by 
atomic and defect interchange between the surface 
and the bulk, the former process generally occur- 
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ring at lower temperatures [17]. Without con- 
sidering the detailed atomistics of either process, 
it is possible to describe the material flux parallel 
or perpendicular to a surface element in terms of 
the driving force for the transport process. The 
origin of this driving force is the chemical potential 
/2 which exists at the boundary between different 
media, and there is a linear relationship between 
the appropriate gradient of this potential and the 
material flux. Since surface migration will probably 
occur first as a function of increasing temperature, 
in the following analysis we assume this to be the 
only diffusion process operating. Under these 
conditions the flux J of surface diffusing atoms 
crossing unit length of a surface is given by [18-  
20] 

D 
d --- V/a (1) 

kTAo 

where D is the surface diffusion coefficient at a 
temperature T, Ao is the surface area per atom, 
and k is Boltzmann's constant. The chemical 
potential #, from thermodynamic arguments [19], 
is a function of the radius of curvature of a surface 
and may be written 

{ I 7 + - - 7 + 1  ~ 2 7 1 R - - ~  R 2 R I ~  l~}2T ) /2 = /20 + +R2 OO ~ a ~2 

' (2) 

where /2o is the chemical potential at a flat inter- 
face, R 1 and R2 are the principal radii of curvatures 
of a surface element, cr the surface normal stress 
(if any), ~2 the atomic volume, 7 the surface energy 
or tension and the derivatives of 7 with respect to 
01 and 02 are along the planes of principal curvature. 

For an isotropic, amorphous substrate 7 will be 
a constant, independent of surface orientation or 
curvature, whereas for crystalline solids it is 
known that 3' is a function of 0 often exhibiting 
extrema along specific crystal orientations. Thus, 
in our present assumption of an amorphous solid, 
with no applied stresses, Equation 2 relaxes to 

/ 2 =  / ~ o + ( ~ + k } g 2 .  (3a) 

If, as in previous treatments of topographic dev- 
elopment we consider a two dimensional surface 
contour only (i.e. a planar section through the 
solid), then Equation 3a can be re-written 

/2 = ~o + "/f?, (3b) 
R ' 
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where R refers to the radius of curvature of an 
element of the surface contour in the xOy plane 
considered. 

For surface diffusion parallel to the plane of 
curvature, V/2 becomes ~/2/az, where z is length 
measured along the surface contour and thus 
Equation 1 is written: 

krA o ~z " (4) 

Since the radius of curvature will be co-ordinate 
dependent upon an initial arbitrary surface con- 
tour, then the atomic flux due to surface diffusion 
will also be co-ordinate dependent. By considering 
the atomic flux difference crossing boundaries at 
lengths z and z + 6z on the surface, it is readily 
shown that there may be an accumulation or 
depletion of surface material at any point, thus 
leading to an advance or regression of a surface 
element in the direction of the surface normal. 
Mullins [17-18] has shown that this normal rate 
of surface motion is given, from Equation 4 by 

t ~H D DN~ 3 2 (1) 
-~ - k T  7 Oz--~ (5) 

where No is the surface atomic density. 
The sign of ~n/Ot in Equation 5 thus depends 

upon the second derivative of 1/R with respect to 
z. The convention has been adopted in surface 
diffusion studies [18] that the local radius of 
curvature R between a solid and vacuum is a 
positive quantity towards the 0x axis for a convex 
bulge upon a solid and measured negative for a 
concave surface trough. If, as earlier [1 -4 ] ,  0 
is the angle between the ion beam (the 0y direc- 
tion) and the normal to the surface at a given 
point (equal to the angle between the tangent to 
the surface at that point and the 0x axis) then 
R =- -dz /d0  in the above convention and Equa- 
tion 5 is re-written 

IOn _ DNo~227 ~30 
D kT ~z 3 (6) 

where I~n/~tLD represents tile rate of growth of a 
surface element away from its centre of curvature. 
Thus, since for a convex bulge ~30/~Z3 is every- 
where positive, Equation 6 indicates that a surface 
element of a convex bulge erodes towards its 
centre of curvature at a rate DNo~227/kT ~30[~Z3. 
For a concave trough the behaviour is reversed 
and there is a net accretion of material. Thus in 



the presence of surface diffusion alone an initially 
contoured infinite surface would relax by erosion 
of bulges and filling in of troughs towards a flat 
surface as shown by Mullins [17]. 

In the presence of sputtering, however, it has 
already been shown [1,7] that the rate of erosion, 
for both convex bulges and concave troughs, of a 
surface element along the normal direction is given 
by 

s = - - ~ S  cos 0 (7) 

where 4) is the sputtering ion beam flux and N 
the solid atomic density. Thus, if sputtering and 
surface diffusion are uncorrelated processes the 
total rate of normal erosion may be written as 
the sum of the contributions of Equations 6 and 7. 

If, however, the sputtering ion beam influences the 
surface diffusion process by, for example, pro- 
duction of excess defects, then the contributions 
will be correlated. A simple first order correlation 
will be discussed later. 

Since S is the sputtering coefficient due to ion 
beam erosion, then one can define, from Equation 
8 an effective sputtering coefficient, Se, which 
accommodates the effects of both ion erosiofi and 
surface diffusion. Thus we define 

N~ ~b DNo~27 030 
S e cos 0 = ~ S c o s  0 -I- - -  

k T  Oz 3 

or  

N DNo~223, O30 
Se z S ~- sec 0 - -  (9) 

(o k T Oz 3" 

With this definition it is now a straightforward 
matter to determine the velocities and directions 
of motion of points on a surface as derived in [4] 
and [6]. 

Thus, if one considers the behaviour of surface 
points which maintain a constant orientation 
relative to the ion beam direction and study the 
so called constant orientation trajectories, then 
the components of velocity of motion of a point 
of constant orientation 0 are given by 

0x = ~ dSe cos2 0 
0 t  0 N dO 

parallel to the 0x direction 

and 

1 0 t  = _~ - ~  sin 0 cos 0 -- Se 

parallel to the 0y direction. (10) 

The direction of motion of such a point is thus 
along an orientation q~ with respect t o  the ion 
beam given by 

dSe . 
- -  s in 0 COS 0 - - S  e 
dO 

tan r = (1 1) 
dSe 
- -  �9 cos 20 
dO 

Substitution of Equation 9 into Equations 10 and 
11 then leads to expressions for the velocity and 
direction of motion of a point of constant orien- 
tation in terms of S, 0 and derivatives of 0 with 
respect to z. 

The rate of change of radius of curvature of a 
surface point may also be readily determined from 
the studies of Ducommun et al. [7] or by the 
following simple argument. 
Since 

OR 0 R = , then -~- 

Thus 

0 ~ /  0 0 

and 

= ~  0 

0R ~ - 

0t 

and finally 

o o \ a t ] o l  o 

Ncos0 ~ ~ c o s 0  

N sin~ d-0 -~-  sin0 cos0--S~ 

OR o = n l  d02 c o s 0 - - 2 ~ - s i n 0 j  (12) 

In the case of sputtering only, Equation 12 is 
important, since it reveals, as shown by Ducommun 
et al. [7], where discontinuities, or edges, first 
develop in an initially continuous curve. In this 
case OR/Otlo can take positive or negative values, 
depending only upon the form of the S/O curve, 
and an edge first forms in finite time when the 
radius of curvature of a surface segment is reduced 
to zero. Edge formation also depends upon the 
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initial surface contour and thus for any arbitrary 
initial contour and arbitrary S]O function it is 
not possible to predict theoretically the erosion 
controlled development of the surface. After edges 
form it is equally difficult to predict the continuing 
development except when it can be recognized 
that edges will intersect and combine to form new 
edges. Successful predictions of contour develop- 
ment and end forms are thus carried out using 
geometrical construction from the Barber et al. 
[6] erosion slowness curve or computer simu- 
lations. In the present case, where co-ordinate and 
radial motion, as defined by Equations 10-12,  are 
contour dependent, not only through the S - - 0  
variation (which is time independent), but also 
through the time dependent local contour varia- 
tions defined by the derivatives of 0 with z, 
analytical prediction of contour development is 
even more difficult. 

Thus, for example, in the Barber et al. [6] 
treatment where a unique erosion slowness curve 
can be defined by the angular variation of 
1/(S cos 0), independent of the instantaneous 
contour geometry, for the case of sputtering alone, 
when one attempts to define an erosion slowness 
curve when surface diffusion is also operative, it 
is immediately noted that this is not instantaneous 
contour geometry independent. This is readily 
perceived since 

1 

Se cos 0 

where K = 

Consequently, when 

030 
Scos 0 + K 7  0z 3 

DNo~2= N 

kT O" 

surface diffusion is also 
operative a unique erosion slowness curve cannot 
be defined, but a family of such curves exists 
according to the allowed values of 030/0z 3. For 
surface convex bulges this parameter varies from 
0 ~ o~ and so the appropriate family of erosion 
slowness curve is contained between a point at 
the origin (030/0z 3 = o~) and the "sputtering only" 
erosion slowness curve (030/0z 3 = 0). For surface 
concave troughs the diffusion parameter varies 
from 0 through -- S cos 0/KT to --oo and the 
family of erosion slowness curves is contained 
between the "sputtering only" curve in the negative 
half plane (i.e. 1/(S cos 0) measured negatively), 
-- oo (when 030/~z 3 = -- S cos O/KT) and in all of 
the positive half plane between 1/(S cos 0) = oo 
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and the origin. These variations of the "effective" 
erosion slowness are shown in Fig. 1. 

The physical meaning of this behaviour of the 
erosion slowness curves is that convex bulges are 
always eroded by sputtering and surface diffusion, 
whereas surface troughs may either erode or 
accrete material, depending upon the relative 
influences of sputtering and surface diffusion. 

The difficulty in analytic prediction of contour 
development now becomes apparent, since for 
every point on a surface contour, there will be 
different erosion slowness curves, depending upon 
the local value of ~30/0z3, and thus the appropriate 
erosion slowness curves to use will be both co- 
ordinate and time dependent. It, therefore, 
appears, at the present, that the most suitable 
method of following contour development when 
surface diffusion is operative will be by com- 
puter simulation; using Equations 10-12,  with the 
value of Se determined from Equation 9 and using 
S~kT/NNoDf227 as a variable parameter, for a 
variety of initial contours. Such a programme of 
study has been initiated by the author and results 
will be presented at a later date. 

Despite the difficulty of predicting detailed 
contour development and the progress towards 
end forms (t-+ oo) at this stage, some interesting 
observations can be made. 

If Equation 13 is re-written in full, using 
Equation 9, one obtains 

57L0 = I F  cos - 2 sin 0 

N Oz 

(13) 

where the first term on the right hand side of 
Equation 13 describes the effects of sputtering and 
the second describes the influence of surface 
diffusion. 

The first term is sign convention independent 
(i.e. whether one assumes positive or negative 
radius of curvature for a surface bulge or trough), 
but the second term is sign convention dependent. 
The first term has been investigated by Ducommun 
et al. [7] and it is shown that for the experimen- 
tally observed form of the S -- 0 relation, this term 
can possess positive and negative values, depending 
on the value of 0. Thus radii of curvature in both 
bulges and troughs can increase or decrease with 
time and indeed the local radius of curvature can 
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Figure 1 Schematic representation of  the behaviour of  the "effective erosion slowness' (1/S e cos O) as a function of  
direction of  ion incidence 0 to a stirface element,  for various values of  ~30/~z3 for (a) convex surface bulge, (b) concave 
surface trough. 
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reach zero in finite time. This condition indicates 
edge formation. 

Considering the second term in Equation 13 
alone, if one adopts the sign convention of positive 
radius of curvature for a surface bulge, then 
apparently the local radius of curvature could 
increase or decrease with time, depending upon 
the relative magnitudes of  the first through to the 
fifth derivatives of 0 with respect to z. In the case 
of time decreasing radius of curvature, however, 
then as the radius approaches zero, the final term 
in ~30/~Z3 is dominant and with the convention of 
positive radius for a convex bulge, ~30/~z3 ~ + ~,  
which indicates that although the first sputtering 
term may be tending to decrease R, the second 
surface diffusion term becomes dominant and 
increases R. The inverse argument applies to the 
case of a concave surface trough. Thus R = 0 
cannot occur. The implication of this result is 
that edges cannot form, even with the smallest 
contribution from surface diffusion. This finding 
is completely compatible with the situation of 
surface diffusion alone, where it is found [21], 
~for example, in field emitter tips, the blunting 
occurs due to surface diffusion. Indeed the anology 
of the present study with the behaviour of field 
emitter tips is strong since in the present case, 
sputtering is the cause of edge formation, whilst 
in the field emitter case an applied electrostatic 
field exerts a similar influence, with both opposed 
by the effects of surface diffusion. 

Equilibrium, or end form conditions, can be 
determined by demanding that ~x/Ot[o and 
Oy/~tlo are simultaneously independent of 0 in 
Equation 10 or equivalently that OR/Ot[ o in 
Equation 13 is zero. A general contour, satisfying 
Equation 13 = 0, can be determined, but it is also 
interesting to note that the condition R = ~,  
OO/3z = 0 also satisfies this condition. Thus, a 
special end form is certainly a straight line (or 
plane in three dimensions). This is the form ex- 
pected from considerations of sputtering alone 
[4-6]  or self diffusion alone [18] on an infinite 
surface and is, therefore, not surprising. Without 
detailed consideration of the dynamic of contour 
development, it is not possible, analytically, to 
determine whether the smoothing is faster when 
both contouring processes operate simultaneously 
rather than in isolation, but heuristically one 
might expect such to be the case. Indeed, the 
recent experiments of Vasiliu et al. [16] suggest 
that as temperature is increased, sputtering induced 
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topography growth becomes less apparent and 
bombarded surfaces adopt a smoother habit. If, as 
proposed by Vasiliu et al., surface diffusion is a 
majo} cause of this effect, then this would be ex- 
pected to increase with temperature, since the 
surface diffusion coefficient increase rapidly with 
temperature T via a relation of the form D = Do 
exp ( - -E /kT) ,  where E is the activation energy 
for the process. 

Indeed, if in Equation 9 the second right hand 
term is identified as an "effective sputtering 
coefficient" due to surface diffusion, this is seen 
to increase with both D and 3 .̀ Thus, since progress 
towards equilibrium is undoubtedly faster the 
larger the sputtering coefficient (e.g. all erosion 
velocities scale with S), then it is expected that 
increased values of D and the surface tension 3' 
would lead to more rapid attainment of equilibrium 
- both physically realistic conclusions. 

At this point, comment will be made upon the 
influence of bombardment enhanced surface 
diffusion. Vasiliu et al. [16] observed that, at 
elevated substrate temperatures, surface features 
were minimized within the bombarded area of an 
Fe sample, but that features, atypical of thermal 
facetting, were observed outside the irradiated area. 
Hermanne has also reported (private communi- 
cation) that surface feature growth during ion 
bombardment of Cu can be inhibited at 350 to 
400 ~ C, whereas features produced by room tem- 
perature irradiation can only be annealed at tem- 
peratures >> 400 ~ C. This evidence suggests that 
bombardment may enhance surface diffusion, 
just as it is known to enhance volume diffusion 
in a number of circumstances [22]. The process 
of radiation damage enhanced diffusion is usually 
associated with the presence of a vacancy density 
in excess of the thermal equilibrium density. In 
the case of our hypothetical amorphous solid, 
such a process is less meaningful, but since it is 
believed that the present results can be taken over 
into the crystalline solid case (with some care since 
other topography induction effects also exist), 
the same assumption of the cause of diffusion 
enhancement will be made. 

When an ion slows down to rest in a solid it 
creates a displaced atom cascade [23], forming 
a depth distribution of point and extended defects. 
Some of these defects will rapidly anneal, due to 
both thermal and athermal processes, but a fraction 
will survive, potentially assisting the diffusion 
process. If the surface defect density is not too 



large (i.e. not approaching complete disorder, 
where this is a curious concept in a random 
amorphous solid), then it is reasonable to assume 
that each bombarding ion will produce a certain 
number n/unit area surviving defects, where n will 
be a function of ion type and energy, target 
material, orientation and -temperature. At high 
levels of n it would be more appropriate to write 
n as the solution of (dn/dt)= q~A(1 --an), where 
A is a constant describing the number of surviving 
defects produced per ion and a is the area of each 
surface defect. 

At the lower levels of n, we will assume, as a 
first order approximation, that the competing 
processes of defect production and annealing reach 
rapid equilibrium, so that the excess defect density 
is a linear function of the bombarding ion flux. 
This assumption also embraces the concept that 
surface atomic diffusion does not change this 
excess defect concentration (i.e. a dilute solution 
approximation). In these circumstances, we can 
write n = Be, where B is a constant. In the dilute 
solution approximation we can write [24] the 
diffusion coefficient DE in the presence of excess 
defects as 

DE = D + nDv (14) 

where Dv  is the diffusion coefficient of defects 
(presumably vacancies) at the substrate temperature 
during irradiation. For a surface element inclined 
at angle 0 to the 0x direction, the ion flux is ~b 
cos 0, thus, for this element 

n = Be cos 0. (15) 

Thus, in the presence of the ion flux 

DE = D + B e  cos 0 D v ,  (16) 

and substituting this expresion into Equation 9 
yields an "effective sputtering coefficient" in the 
presence of thermal and radiation enhanced surface 
diffusion as 

Se = $4  N N~ 330 
4) k ~  sec 0 ~z 3 (D + B e  cos 0 D v )  

(17) 

In this case, therefore, there are three terms des- 
cribing the effective sputtering, two of which are 
beam flux dependent and one which is not. The 
extra term in Equation 17 when compared with 
Equation 9 is the correlation term of bombard- 
ment and diffusion. Detailed prediction of growth 
contours clearly requires computer simulation in 

this case. If  the beam flux is relatively large, the 
effect of thermal surface diffusion could be much 
smaller than that due to enhanced diffusion, and 
this difference will become increasingly more 
important with increasing temperature since 
Dv/D = exp (E--Ev/kT) .  Thus, for high beam 
fluxes and temperatures where ( E - - E v / k T  ) is 
reduced, bombardment enhanced diffusion will 
dominate and be (in a first approximation) flux 
independent. Thus, one can perceive three tem- 
perature stages for topographic development. The 
first at low temperatures where both thermal and 
radiation enhanced surface diffusion are absent 
and sputtering will dominate with flux indepen- 
dence. At intermediate temperatures where defect 
mobility is relatively low, but diffusion may be 
dramatically enhanced due to a large ion bombard- 
ment induced defect density, both sputtering and 
surface diffusion will modify the topography and 
be beam flux independent at high beam flux, but 
flux dependent at low flux. Finally, at high tem- 
peratures, thermal surface diffusion will dominate 
and topography development will be beam flux 
independent. 

Although this treatment is very superficial, it 
does indicate the complexity of events, even for 
the assumed amorphous solid. In the case of a 
crystalline solid, treatment is even more difficult 
since not only wilt the influence of subsurface 
extended defects become important, but also the 
anisotropy of 7 as a function of crystalline orien- 
tation and S as a more complex function of orien- 
tation will perturb the situation discussed here. 
Thus one might expect, in the case of crystalline 
solids, at low temperatures where sputtering is 
dominant, the development of non-equilibrium 
surface facets of high sputtering yield, and at 
higher temperatures the development of thermal 
facets corresponding to 7 - - 0  discontinuities. At 
intermediate temperatures, in the absence of ex- 
perimental data, it is hazardous to guess the 
effects. 

3. Conclusions 
A simplified analytic treatment of the development 
of surface topography of a solid influenced by ion 
bombardment induced erosion, together with 
surface diffusion, both thermal and radiation 
enhanced, results in intractable mathematical 
descriptions of the temporal topographic growth. 
Computer simulation is required for detailed 
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p red i c t i on ,  b u t  some  general  conc lus ions  as to  the  

i n f l uence  o f  d i f fus ion  can be  d rawn .  Thus ,  the  ne t  

e f fec t  o f  d i f fus ion  is to  p r o h i b i t  angular  discon-  

t i n u i t y  f o r m a t i o n  and  a more  rapid  a t t a i n m e n t  

o f  equ i l i b r i um end  fo rms .  Di f fus ion  assists the  

e ros ion  o f  bulges  on  surfaces ,  b u t  can i m p e d e  the  

e ros ion  o f  t roughs .  
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